Progression in Calculations

Addition

Objective and
Strategies

Combining two
parts to make a
whole: part-
whole model

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. Also use blank number lines on whiteboards	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Partitioning to add			10 2 +10 5 20 + 7 12 15 10 2 10 10
Regrouping to make 10	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Complete activities reasoning with egg boxes cut into two rows of five	Use pictures or a number line. Regroup or partition the smaller number to make 10 . Understanding built with frequent use of egg boxes and represent on a number line both numbered and blank $10+2=12$ \square 5 9 \square 1 $+$ 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now? Use a range of representations of numbers using a range of equipment

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	 Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column method no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. Represent base 10 counters like this: $\mid=10 \quad \bigcirc=1$	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{aligned} 42+21 & \\ (40)+20) & =60 \\ (2+1) & =3 \\ 60+3 & =63 \end{aligned}$ Or $42+20=62+1=63$
Column method regrouping	Make both numbers on a place value grid. 146 $+527$	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ $4-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Partitioning		$\begin{aligned} & 15-12 \\ & 1 \quad 000 \not \varnothing \varnothing=3 \end{aligned}$	$\begin{array}{r} 103 \\ -\quad 10 \quad 2 \\ \hline \end{array} \begin{aligned} & \\ & \hline 0 \end{aligned}$
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to Lisa is 13 years old. Her sister is 22 years old. find the difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities to show how to double a number. \& \begin{tabular}{l}
Draw pictures to show how to double a number.

Double 4 is 8

\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition	Use different objects to add equal groups.	the the 2 add 2 add 2 equals 6	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	 Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} 00000 \\ 00000 \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Grid Method

Show the link with arrays to first introduce the grid method.

4 rows
of 10
4 rows
of 3
Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

$$
\frac{\text { Calculations }}{4 \times 126}
$$

Fill each row with 126.

$$
\frac{\text { Calculations }}{4 \times 126}
$$

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Part-Whole Model For Multiplication/Division
Malia ate 6 packs of fruit snacks each week for 4 weeks. How many packs of fruit snacks did she eat in all?

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

X	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

x	4
200	800
70	280
6	24
	1104

x	10	8
1000	1000	8000
300	3000	2400

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $10 \div 2=5$ 10 divided into groups of 2 equals 5 groups of 2 $35 \div 5=7$ Use a bead string and place pegs to show groups. Record the repeated subtraction on a number line	Draw dots to show an amount $12 \div 3=4$ Use a number line to show jumps in groups. The number of jumps equals the number of groups. $30 \div 5$	$28 \div 7=4$ Divide 28 into groups of 7. How many groups of 7 can 28 be divided into? Show the link between multiplication and division by exploring fact families from an early stage. Regularly stress the link between multiplication and division, and how children can use their tables facts to divide by counting forwards in steps.

		Using the bar model to show division calculations Forty eight pencils must be packed in 6 boxes. How many pencils will be in each box?	
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a remainder	$11 \div 3=3 r 2$ Divide objects into groups of 3. How many complete groups and how many remain.	Draw dots and group them to divide an amount and clearly show a remainder. (remainder 2 Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $23 \div 5=4 \text { r } 3$	Complete written divisions and show the remainder using r .
Long division	$51 \div 3=$ Bead strings 	Link long division first with a number line $51 \div 3=17$ $87 \div 3=29$ Emphasise 'efficient chunking'	Moving onto more formal methods of division. The number line method can be translated into the more formal long division method but pupils will need to be able to complete column subtraction confidently and know their times tables and related facts eg $3 \times 4=12 \quad 30 \times 4=120$ etc. 'Chunking'- division by subtracting 'chunks' of the divisor $\begin{array}{r} 132 \div 5= \\ 26 \text { r2 } \\ 5 \longdiv { 1 3 2 } \\ \frac{50}{82} 10 \\ \frac{50}{32} 10 \\ \frac{30}{2} 6 \end{array}$ Then move onto a more refined and efficient 'formal' long division

		Before beginning a calculation pupils will be encouraged to create a list of facts using mental strategies. $\begin{aligned} & 1 \times 24=24 \\ & 2 \times 24=48 \\ & 3 \times 24=72 \\ & 4 \times 24=96 \\ & 5 \times 24=120 \\ & 10 \times 24=240 \end{aligned}$ This list will be written in a simplified to allow for speed of calculation $\begin{array}{lll} \text { e.g. } \begin{array}{ll} 1 x & 24 \\ 2 x & 48 \end{array}, ~ \end{array}$ Pupils will be encouraged to use the most appropriate method for the division sum either long or short. Short division may be used for 2 digit numbers such as 11,12 , 15 as well as single digits	$\begin{array}{r} 2 4 \longdiv { 1 3 0 3 2 } \\ -\frac{120}{103} \\ -96 \\ -72 \\ \frac{-72}{00} \\ \hline \end{array}$
Short divis		Short division can be shown as a method in itself as long as the pupils have a strong understanding of place value and have a strong understanding of 'fact families' where multiplication and division facts are linked. Initially, introduce this method by linking it to 'chunking'. $87 \div 3=29$ $3 \longdiv { 2 0 + 9 }$ Then, refine the method into the traditional format, ensuring that all initial teaching is accompanied by a clear explanation of how this method works (see speech bubbles) $3 \longdiv { 8 ^ { 2 } 7 }$ From 80 , what is the largest number of 10 s that will divide exactly by 3 ? 60 (or 6 tens) $\div 3=20$ (or 2 tens). Carry the remaining 20 to the units.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Show the remainder as a fraction eg 86 2/5

Division of decimals	$158.4 \div 6=26.4$ $22.4 \div 0.8=28$	Finally move into decimal places to divide the total accurately $\begin{array}{r} 188 \div 8= \\ \text { 8) } \begin{array}{r} 23.5 \\ 18^{2} 8 .^{4} 0 \end{array} \end{array}$

